ul 2 00 3 Restricted 3412 - Avoiding Involutions : Continued Fractions , Chebyshev Polynomials and Enumerations ∗

نویسنده

  • Eric S. Egge
چکیده

Several authors have examined connections among restricted permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we prove analogues of these results for involutions which avoid 3412. Our results include a recursive procedure for computing the generating function for involutions which avoid 3412 and any set of additional patterns. We use our results to give enumerations and generating functions for involutions which avoid 3412 and various sets of additional patterns. In many cases we express these generating functions in terms of Chebyshev polynomials of the second kind.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 04 Involutions Restricted by 3412 , Continued Fractions , and Chebyshev Polynomials

We study generating functions for the number of involutions, even involutions, and odd involutions in Sn subject to two restrictions. One restriction is that the involution avoid 3412 or contain 3412 exactly once. The other restriction is that the involution avoid another pattern τ or contain τ exactly once. In many cases we express these generating functions in terms of Chebyshev polynomials o...

متن کامل

Horse paths, restricted 132-avoiding permutations, continued fractions, and Chebyshev polynomials

Several authors have examined connections among 132-avoiding permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we find analogues for some of these results for permutations π avoiding 132 and 1223 (there is no occurrence πi < πj < πj+1 such that 1 ≤ i ≤ j − 2) and provide a combinatorial interpretation for such permutations in terms of lattice paths. ...

متن کامل

A ug 2 00 2 Permutations Which Avoid 1243 and 2143 , Continued Fractions , and Chebyshev Polynomials ∗

Several authors have examined connections between permutations which avoid 132, continued fractions, and Chebyshev polynomials of the second kind. In this paper we prove analogues of some of these results for permutations which avoid 1243 and 2143. Using tools developed to prove these analogues, we give enumerations and generating functions for permutations which avoid 1243, 2143, and certain a...

متن کامل

Restricted 132 - Involutions

We study generating functions for the number of involutions of length n avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary permutation τ of length k. In several interesting cases these generating functions depend only on k and can be expressed via Chebyshev polynomials of the second kind. In particular, we show that involutions of length n avoiding ...

متن کامل

ar X iv : m at h / 01 08 04 3 v 1 [ m at h . C O ] 6 A ug 2 00 1 Restricted set of patterns , continued fractions , and Chebyshev polynomials

We study generating functions for the number of permutations in Sn subject to set of restrictions. One of the restrictions belongs to S3, while the others to Sk. It turns out that in a large variety of cases the answer can be expressed via continued fractions, and Chebyshev polynomials of the second kind. 2001 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70 42C05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008